

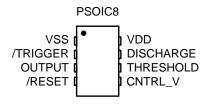
CMT-555 DATASHEET

Version: 1.8 20-Dec-23 (Last Modification Date)

HIGH TEMPERATURE RANGE 555 TIMER

General Description

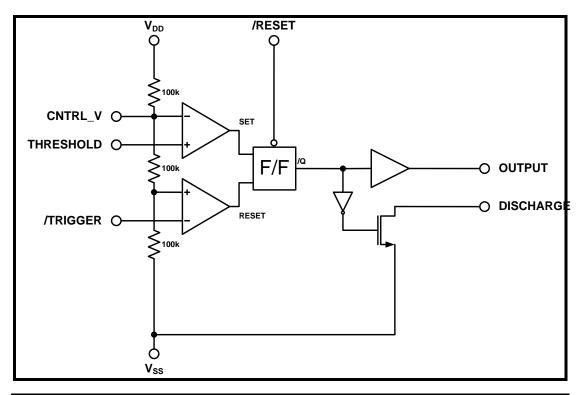
The CMT-555 is an extended temperature range, low-power, highly stable device for generating accurate time delays or oscillation, with enhanced capabilities compared to the well known 555 timer. It can be used as a direct replacement of the standard 555 in applications working from -55°C to +175°C or it can be used in a larger package in order to make use of the enhanced capabilities. These capabilities include the presence of a pin that provides a voltage decreasing linearly with the die temperature as well as a bank of four binary-weighted capacitors from 20pF to 160pF. Because of its high input impedance, this device allows the use of smaller capacitors than those used by the standard 555, then providing more accurate time delays and oscillations, as well as cheaper BOM. The CMT-555 can be used throughout the -55°C to +175°C temperature range.


Features

- Supply voltage 5V +/-10%
- Low supply current
- Timing from microseconds to hours
- Operates in both monostable and astable modes
- Highly stable timing characteristics with temperature and supply voltage
- On-chip temperature sensor -1.47mV/°C
- Validated at 175°C for 30000 hours (and still on-going)
- Available in several standard packages

Applications

- Well logging, Automotive, Aeronautics & Aerospace
- Precision timing
- Pulse generation
- Pulse width and pulse position modulation


Packaging and Pin Description

D: #	Din Name	Din December
Pin#	Pin Name	Pin Description
1	VSS	Ground terminal.
2	/TRIGGER	Sets the output with a fall-
		ing edge.
3	OUTPUT	Main output.
4	/RESET	Main reset. When LOW, inhibits response from all other inputs.
5	CNTRL_V	It can be forced to a given voltage to change the triggering thresholds.
6	THRESHOLD	Resets the output with a rising edge.
7	DISCHARGE	Open drain N-type output. Active when OUTPUT = LOW.
8	VDD	Power supply terminal.

Functional Block Diagram

Function Table

/RESET	THRESHOLD	/TRIGGER	OUTPUT	DISCHARGE
L	X	X	L	ON
Н	> 2/3V _{DD}	> 1/3V _{DD}	L	ON
Н	< 2/3V _{DD}	< 1/3V _{DD}	Н	OFF
Н	< 2/3V _{DD}	> 1/3V _{DD}	Previous state	Previous state
Н	> 2/3V _{DD}	< 1/3V _{DD}	L	ON

PUBLIC 2 of 13 **Doc. DS-080334-V1.8 WWW.CISSOID.COM**

CMT-555 Datasheet 20-Dec-23

(Last Modification Date)

Absolute Maximum RatingsSupply Voltage V_{DD} to GND -0.5
Voltage on any Pin to GND -0.5 to V -0.5 to 6.0V -0.5 to V_{DD}+0.3V

 $\begin{array}{c} \textbf{Operating Conditions} \\ \textbf{Supply Voltage V}_{\text{DD}} \ \text{to GND} \\ \textbf{Junction temperature} \end{array}$ 5V ± 10% -55°C to +175°C

ESD Rating (expected) Human Body Model

1kV

Thermal Characteristics

Parameter	Condition	Min	Тур	Max	Units
Thermal resistance Junction2Air (Θ_{JA})			85		°C/W

3 of 13 **PUBLIC** Doc. DS-080334-V1.8 WWW.CISSOID.COM

Electrical Characteristics

Unless otherwise stated: $V_{DD}=5V$, $\underline{T_i=25^{\circ}C}$. **Bold underlined** values indicate values over the whole temperature range $(-55^{\circ}C < T j < +175^{\circ}C)$.

Parameter	Condition	Min	Тур	Max	Units
Supply voltage		4.5		5.5	V
Current consumption	$R_L = \infty$ $V_{THRESHOLD} < 2V_{DD}/3$ $V_{THRESHOLD} > 2V_{DD}/3$		280 350	360 480	μА
OUTPUT Minimum HIGH level output voltage V он	I _{OH} <8mA (source)	<u>4.75</u>	4.8		V
OUTPUT Maximum LOW level output voltage V _{oL}	I _{OL} <8mA (sink)		0.25	<u>0.3</u>	V
Timing Error: Monostable ^{1,2} (see Figure 1 and Figure 2)					
Initial accuracy	$R_a = 1k$ to $1MEG\Omega$, $C = 10nF$		2.5 3.5		%
Drift with Temperature	R_a = 1k to 100k Ω , C = 10nF R_a = 1MEG Ω , C = 10nF		7 67		ppm/°C
Drift with Supply Voltage	R_a = 10k to 1MEG Ω , C = 10nF R_a = 1k Ω , C = 10nF		0.05 <u>0.2</u>		%/V
Timing Error: Astable ³ (see Figure 5 and Figure 6)					
Initial accuracy	R_a , R_b = 10k to 1MEG Ω , C = 10nF R_a , R_b = 1k Ω , C = 10nF		3 <u>5</u>		%
Drift with Temperature	R_a , R_b = 1k to 100k Ω , C = 10nF R_a , R_b = 1MEG Ω , C = 10nF		20 <u>100</u>		ppm/°C
Drift with Supply Voltage	R_a , $R_b = 10k$ to $1MEG\Omega$, $C = 10nF$ R_a , $R_b = 1k\Omega$, $C = 10nF$		0.2 0.3		%/V
Threshold Voltage		0.660	0.666	<u>0.670</u>	x V _{DD}
Trigger Voltage		<u>0.330</u>	<u>0.335</u>	0.339	x V _{DD}
Control Voltage		<u>0.660</u>	<u>0.667</u>	<u>0.671</u>	x V _{DD}
Discharge switch on-state voltage	$I_{DISCH} = 1 mA$ $T_j = 25^{\circ}C$ $T_j = 175^{\circ}C$		14	18 25	mV
	$I_{DISCH} = 5mA$ $T_j = 25^{\circ}C$ $T_j = 175^{\circ}C$		60	80 <u>110</u>	mV
Discharge switch off-state leakage current	$V_{DISCH} = V_{DD}$ $T_j = 25^{\circ}C$ $T_j = 175^{\circ}C$		4	6 80	nA

¹ The timing accuracy, drift with temperature and supply voltage in monostable as in astable configurations are computed supposing passive components are error free and have no drift with temperature. Accuracy and drift values shown are due to the CMT-555 only.

In the monostable configuration $t_{pulse} = 1.1 R_a C$. Assign the accuracy and drift errors to the "1.1" factor.

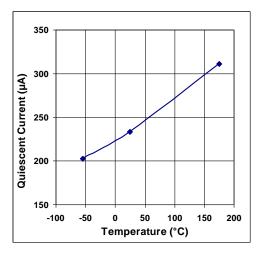
In the astable configuration $t_{pulse} = 1.44 / [(R_a + 2 R_b) C]$. Assign the accuracy and drift errors to the "1.44" factor.

PUBLIC 4 of 13 WWW.CISSOID.COM Doc. DS-080334-V1.8

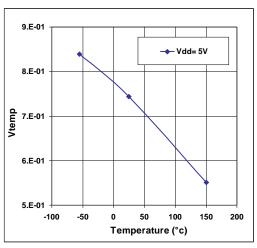
Extended Functionality Characteristics

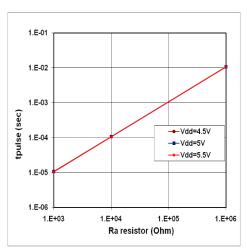
Parameter	Condition	Min	Тур	Max	Units
Temperature sense					
Accuracy		750		790	mV
Linear Sensitivity	Between -55°C and 175°C	-1.69		-1.55	mV/°C
Sensitivity					
Α	$V_{TEMP} = A + B T (^{\circ}C) + C T (^{\circ}C)^{2}$	745		789	mV
В		-1.63		-1.47	mV/°C
С		-433		-0.430	nV/°C²
Internal capacitors					
Initial accuracy		-17		+17	%
Voltage dependence					
VC1	C() () C (4.) (C4.) (.) (C2.) (?)		-0.475		10 ⁻³ /V
VC2	$C(V)=C_0 (1+VC1.V+VC2.V^2)$		-4.30		10 ⁻⁶ /V ²
Temperature depend- ence					
TC1	$C(T)=C(T_0)$ [1+TC1.(T-T ₀)+TC2.		0.023		10 ⁻³ /K
TC2	$(T-T_0)^2$		0.013		10 ⁻⁶ /K ²

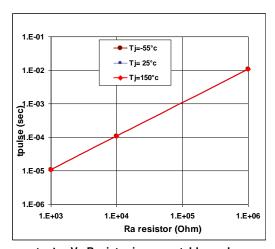
AC Electrical Characteristics


Unless otherwise stated: $V_{DD}=5V$, $\underline{T_{j}=25^{\circ}C}$. **Bold underlined** values indicate values over the whole temperature range (-55°C < T j < +175°C).

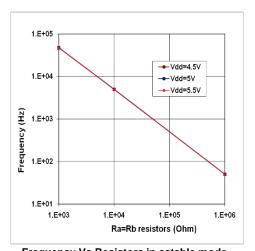
Parameter	Condition	Min	Тур	Max	Units
Maximum frequency in astable mode.			4.2		MHz
Ouput pulse rise time	D. 4k to 4MECO C. 40nE		2.2 <u>14</u>		ns
Ouput pulse fall time	$R_A = 1k$ to $1MEG\Omega$, $C = 10nF$		3 <u>14</u>		ns


PUBLIC 5 of 13 Doc. DS-080334-V1.8 WWW.CISSOID.COM

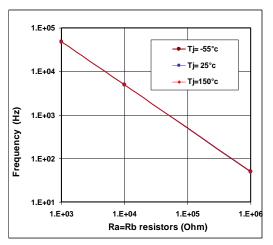

Typical Performance Characteristics


Current consumption, $V_{DD} = 5V$

Vtemp, $V_{DD} = 5V$



tpulse Vs Resistor in monostable mode, C=10nF, Vdd=4.5 to 5.5V



tpulse Vs Resistor in monostable mode, C=10nF, T_j =-55 to +150°C

Frequency Vs Resistors in a stable mode, C=10nF, T_j =-55 to +150°C

Typical Applications

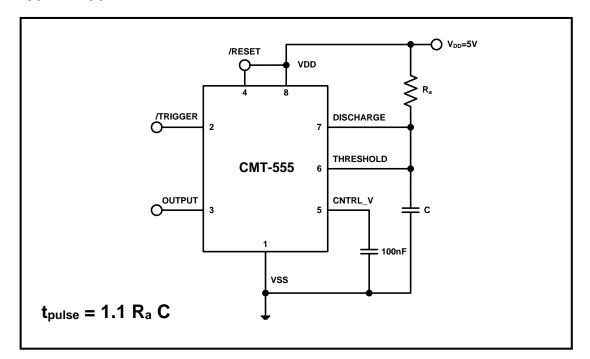


Figure 1. Monostable configuration.

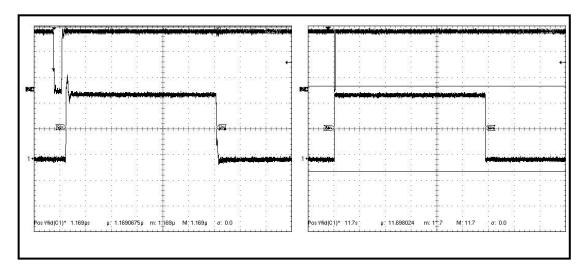


Figure 2. Monostable output waveforms: 1.17µsec (left) and 11.7sec (right).

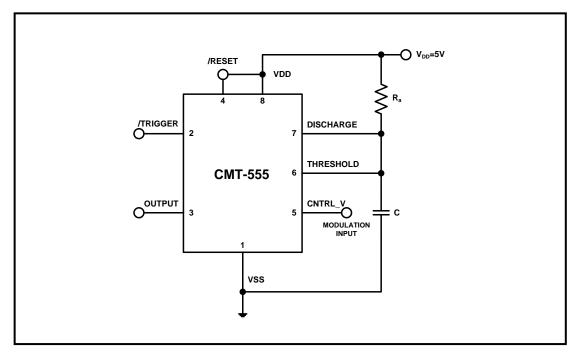


Figure 3. Pulse width modulator configuration.

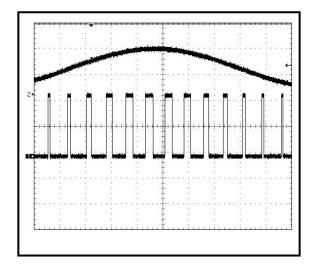


Figure 4. Pulse width modulator output waveforms: modulating signal (above) and output signal (below).

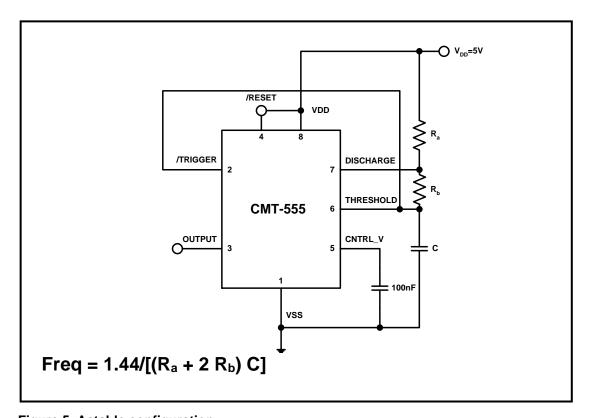


Figure 5. Astable configuration.

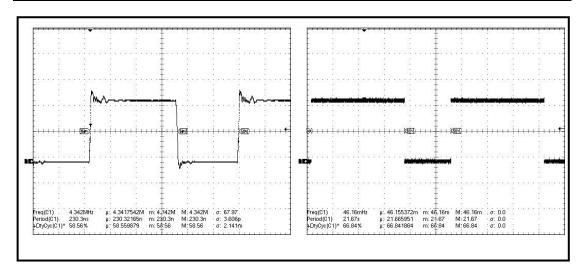


Figure 6. Astable output waveforms: 4.32MHz (left) and 46.2mHz (right).

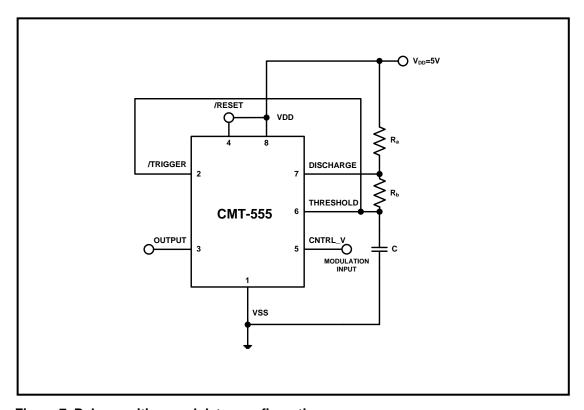
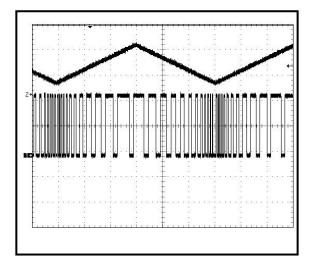
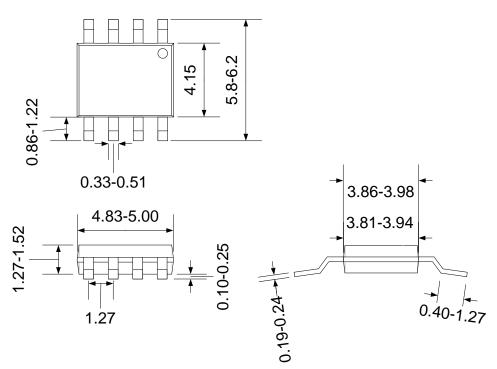


Figure 7. Pulse position modulator configuration.




Figure 8. Pulse position modulator output waveforms: modulating signal (above) and output signal (below).

Ordering Information

Ordering Reference Package		Temperature Range	Marking
CMT-555-PSOIC8-T	Plastic SOIC8	-55°C to +175°C	CMT-555

Package Dimensions

Drawing PSOIC8 (mm +/- 10%)

Contact & Ordering

CISSOID S.A.

Headquarters and contact EMEA:	CISSOID S.A. – Rue Francqui, 11 – 1435 Mont Saint Guibert - Belgium T: +32 10 48 92 10 - F: +32 10 88 98 75 Email: sales@cissoid.com
Sales Representatives:	Visit our website: http://www.cissoid.com

Disclaimer

Neither CISSOID, nor any of its directors, employees or affiliates make any representations or extend any warranties of any kind, either express or implied, including but not limited to warranties of merchantability, fitness for a particular purpose, and the absence of latent or other defects, whether or not discoverable. In no event shall CISSOID, its directors, employees and affiliates be liable for direct, indirect, special, incidental or consequential damages of any kind arising out of the use of its circuits and their documentation, even if they have been advised of the possibility of such a damage. The circuits are provided "as is". CISSOID has no obligation to provide maintenance, support, updates, or modifications.

PUBLIC 13 of 13 Doc. DS-080334-V1.8 WWW.CISSOID.COM