

SIC INVERTER PLATFORM WEBINAR

27 February 2025

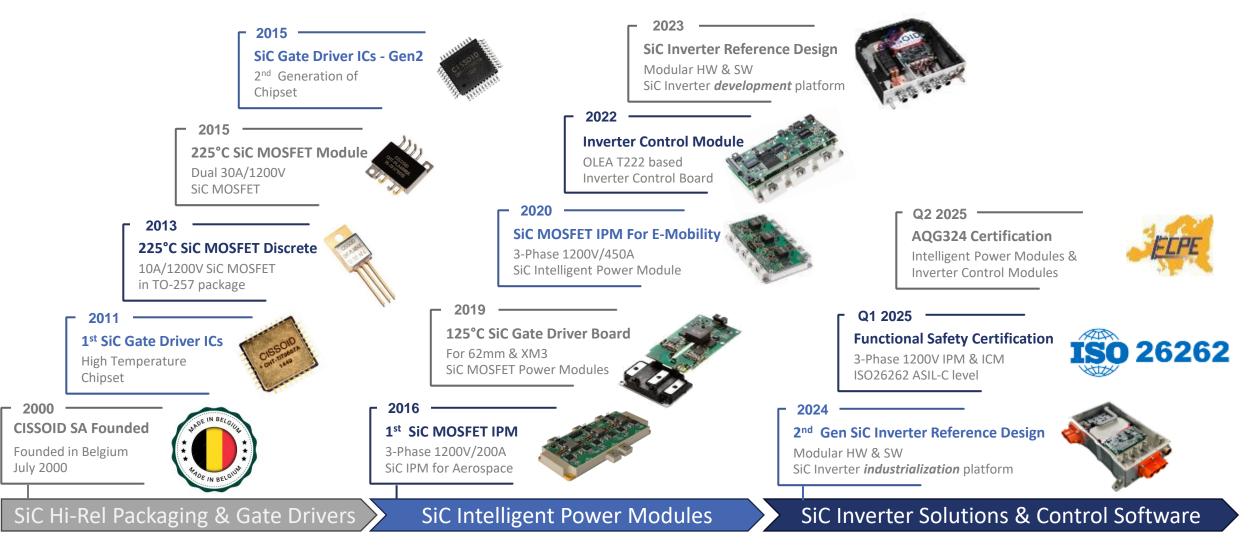
INTRODUCTION

Agenda

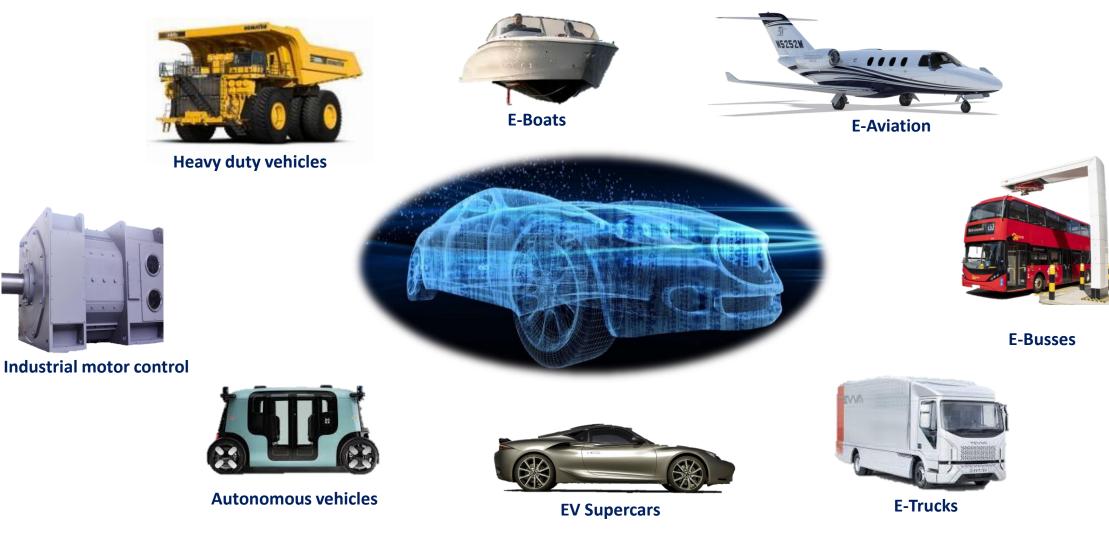
- SiC Intelligent Power Modules & Inverter Control Modules
- Modular SiC Inverter Platform (+ Software)
- SiC Inverter Reference Designs
- Case studies:
 - Dead Time Compensation & Optimized Pulse Patterns
 - Reduction of noise & vibration results
 - Efficiencies achieved
 - Q&A

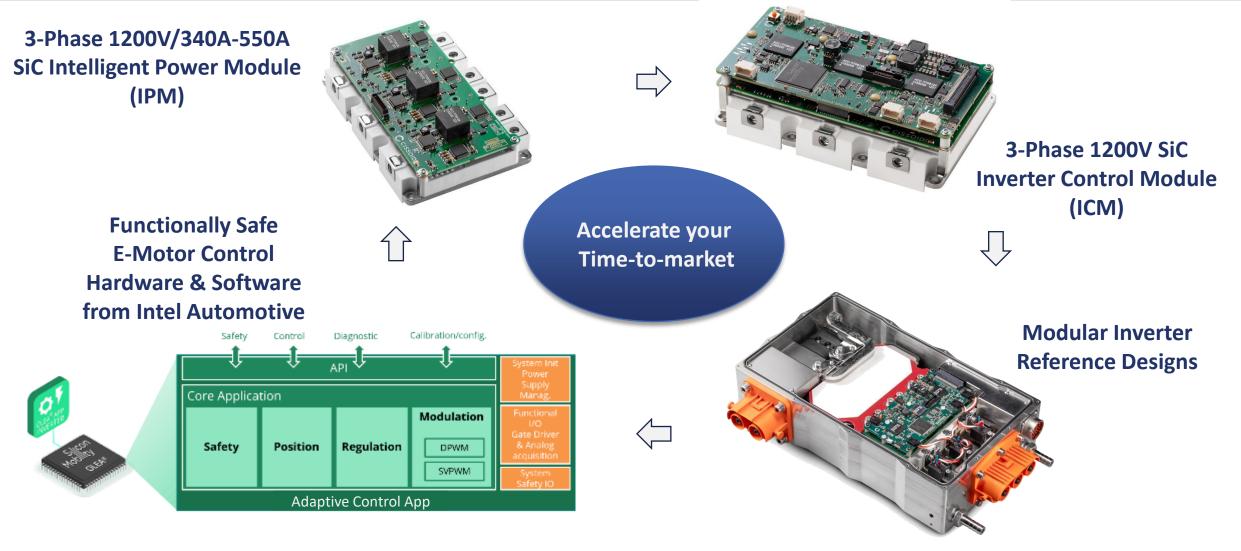
Presenters

Pierre Delatte Chief Technology Officer


Mike Sandyck Marketing Director

CISSOID AT A GLANCE


SILICON CARBIDE INNOVATION SINCE 2011


GLOBAL ELECTRIFICATION IS CREATING MULTIPLE OPPORTUNITIES FOR SIC BESIDES MAINSTREAM EVS

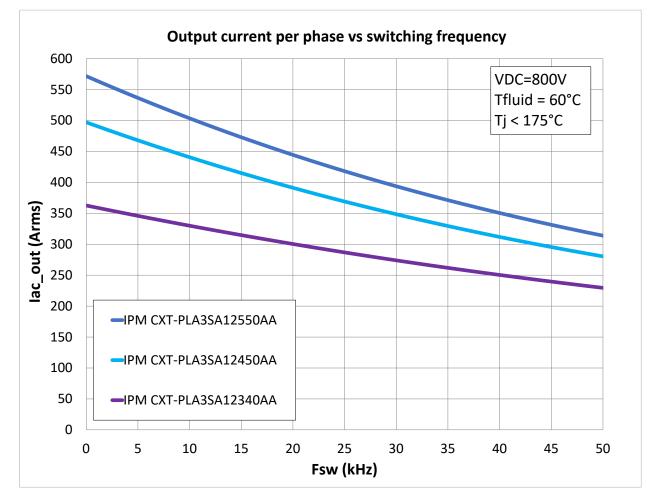
A UNIQUE MODULAR SIC INVERTER PLATFORM BASED ON A SUITE OF HARDWARE & SOFTWARE PRODUCTS

SIC INTELLIGENT POWER MODULE

3-PHASE 1200V SIC MOSFET INTELLIGENT POWER MODULES (IPM)

- Drain-Source breakdown voltage: 1200V
- Low On-Resistance: 2.53mΩ to 4.2mΩ
- Max Continuous Current: 340A_{RMS} to 550A_{RMS}
- Max Switching Frequency: 50kHz
- High Isolation Grade: >3.6KVrms
- Low Switching Energies
- Extended Operating Temperature
- Lightweight AlSiC baseplate: 550 590g

Pin Fin (liquid cooling)


Flat baseplate

Part Number	Max V _{DS}	Max I_{DC} @ 25°C/90°C	Typ. Ron @25°C/175°C	Eon @300A/600V	Eoff @300A/600V	Baseplate	Rthjc
CXT-PLA3SA12340AA	1200V	340A/260A	4.2mΩ/7.64mΩ	7.48mJ	7.39mJ	Pin fin	0.167°C/W
CXT-PLA3SA12450AA	1200V	450A/350A	3.25mΩ/5.15mΩ	8.42mJ	7.05mJ	Pin fin	0.130°C/W
CXT-PLA3SA12550AA	1200V	550A/400A	2.53mΩ/4.4mΩ	9mJ	7mJ	Pin fin	0.119°C/W
CMT-PLA3SB12340AA	1200V	340A/255A	3.25mΩ/5.15mΩ	8.42mJ	7.05mJ	Flat	0.183°C/W

THERMALLY ROBUST IPMS

- Max junction temperature of power transistors: 175°C
- Junction-to-Fluid thermal resistance¹:
 0.16°C/W at 10l/min flow rate (50% ethylene glycol, 50% water, 75°C inflow temperature)
- Junction-to-case thermal resistance¹: 0.119°C/W
- Temperature robust gate driver board with Max Ambient Temperature up to 125°C

SIC GATE DRIVERS – GEN2

Optimized to drive SiC MOSFETs

- High peak current for fast switching: > 10A
- Robust against high dV/dt: > 50kV/µs
- High temperature for high power density: T_{amb} > 125°C
- Accurate gate driver voltages: < +/-5%
- Protection functions
 - UVLO (primary and secondary sides)
 - Desaturation Detection & Soft Shutdown
 - Negative drive & Active Miller Clamp (AMC) for robustness against parasitic turn-On
 - PWM glitch filter
 - PWM anti-overlap protection

SIC INVERTER CONTROL MODULE

SIC INVERTER CONTROL MODULE (ICM)

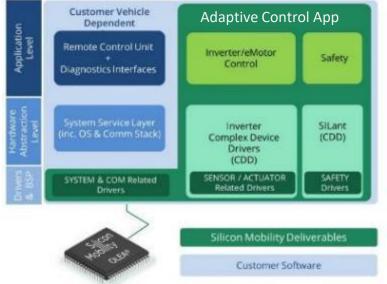
 Control Board mechanically & electrically integrated with the SiC IPM based on Adaptive Control Unit (ACU) T222 by Intel Automotive

ICM Interfaces

- Power module: 3-Phase outputs & 3x2 Power Supply Pins
- Motor: Position Sensor (Resolver, Sin/Cos), current/temperature sensors
- Vehicle: CAN & Battery supply
- Developer: SWD (debug) & Trace Port Unit (real-time debug & calibration)

Adaptive Control App (ACA) by Intel Automotive

- Highly configurable inverter & motor control software
- Advanced control algorithms for highly energy-efficient systems
- Closed-loop current control based on Field Oriented Control regulation
- SVPWM and DPWM modulation up to 50 kHz or Optimized Pulse Patterns

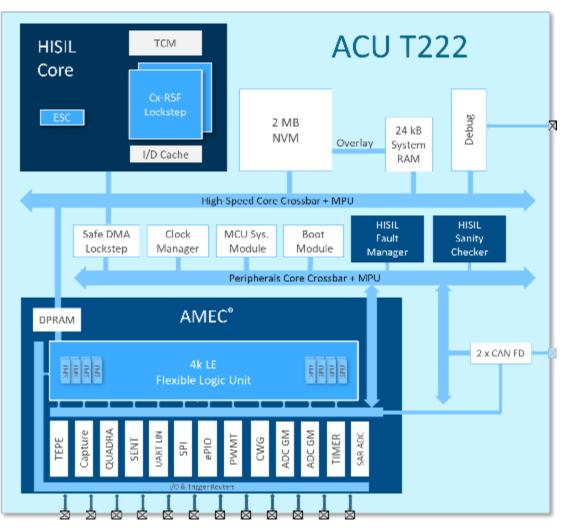


Mob

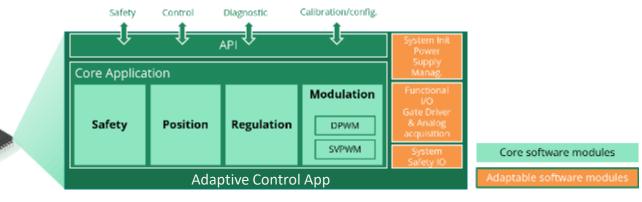
An Intel Company

ISSOID

SEMICONDU


ADAPTIVE CONTROL UNIT (ACU) T222

- Ultra-fast real-time processor by Intel Automotive System-level fault detection, correction and containment in tens of nanoseconds
 - 40x faster processing compared to standard MCUs
 - 1000x faster fault detection compared to standard solutions
 - Real-time 100% timing predictability
- HISIL Core Functional Safety Integrated
 - Dual 200MHz ARM Cortex R5F in Lockstep
 - Safe DMA transfers with CRC checks
- AMEC Advanced Motor Event Control
 - HW programmable Flexible Logic Unit
 - 4560 Programmable Logic Elements
 - 20x 24-bit Signal Processing Units
 - Parallel access for acquisition & control



ADAPTIVE CONTROL APP (ACA)

- Motor types
 - PMSM (Permanent Magnet Synchronous Motor)
 - WRSM (Wound Rotor Synchronous Motor)
 - Axial/Radial, 3-Phases/6-Phases
- Modulation
 - SVPWM (Space Vector Pulse Width Modulation)
 - DPWM (Discontinuous Pulse Width Modulation)
 - Variable switching frequency & Dead-time compensation
- Motor position sensors supported
 - SIN/COS, resolver, AMR-GMR, Hall effect, etc
- Motor control algorithms
 - Flux Weakening management
 - FOC (Field Oriented Control)
 - D/Q inductances LUT
 - Torque derating LUT based on Speed/DC-Link and T°
 - Slew rate limitation
 - Torque/Current/Speed control
 - Rotor control
 - Clockwise/Anti-clockwise

- Motor Control APIs
 - to pilot the e-motor with Torque or Speed command
 - to manage the control state (Power-up, Init, Standby, Active, Power-down, Power-off)
 - to get the motion state (Drive Motion/Braking or Reverse Motion/Braking)
- Safety APIs
 - to manage the faults/warning such as over/under current/voltage on phases, the over-voltage on DC-Link, the over-temperature on Power Transistor or e-motor
 - to get the Safe state
- Diagnostics APIs
- Calibration/Configuration APIs

CERTIFICATION & AVAILABILITY

INTEL/Silicon Mobility Certification

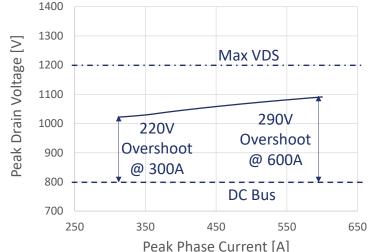
- MCU: T222 Adaptive Control Unit (ACU)
 - AEC-Q100 Grade 1 (-40°C to +125°C)
 - ISO26262 ASIL-D Certified
- SW: Adaptive Control App (ACA)
 - ISO26262 ASIL-D Certified
 - AUTOSAR 4.3

ICM Certification

- ISO26262 ASIL-C Ready (Q1 2025)
- AQG-324 (Q2 2025)
- ISO26262 ASIL-C Certified (Q3 2025)

Ordering References	Max Output Power	Max Phase Current	Base- plate
CXT-ICM3SA12340AAA	305kW	295A _{RMS}	Pin fin
CXT-ICM3SA12450AAA	405kW	390A _{RMS}	Pin fin
CXT-ICM3SA12550AAA	475kW	460A _{RMS}	Pin fin
CXT-ICM3SB12340AAA	330kW	320A _{RMS}	Flat

SIC INVERTER PLATFORM


Companion DC Link Capacitors for IPMs/ICMs in partnership with Advanced Conversion

- Capacitor range: 135µF to 500µF
- Voltage range: 500V to 900V
- Total loop inductance (IPM + Cap) : <18nH
- High temperature dielectric : > 125°C

Power module, gate driver & DC Link Capacitor

- Fully characterized switching loop
- dI/dt and & dV/dt optimized to support 800V DC bus
- Best trade-off between switching energies & drain-to-source voltage overshoot
- 3D-printed Reference Coolers
 - With & without pressure sensors

SIC INVERTER REFERENCE DESIGNS

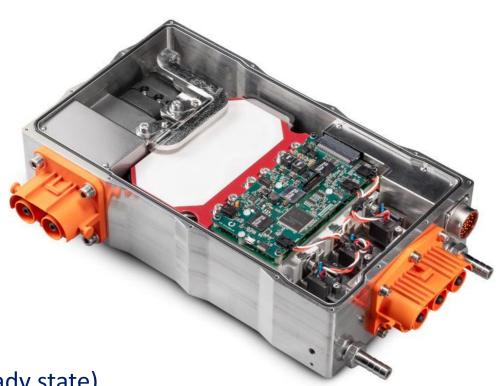
SIC INVERTER REFERENCE DESIGNS

- Accelerating SiC inverters design
- Modular design around CISSOID ICMs
- Supporting high voltage/power designs
- **Open Bill-of-Material** (BOM) & step files
- Embedding Intel Adaptive Control App ISO-26262 ASIL-D Software
- Setup & calibration in less than a week on a motor bench

	Bench-top	On-board		
SiC Inverter Reference Designs				
For lab & bench testing	\checkmark			
For in-vehicle testing		\checkmark		
Easy access to All sub-components Measurement points Connectors 	\checkmark			
Compact design		\checkmark		
Extensive EMC shielding		\checkmark		
Hermetically sealed		\checkmark		
Vibration resistant		\checkmark		

BENCH-TOP SIC INVERTER REFERENCE DESIGN

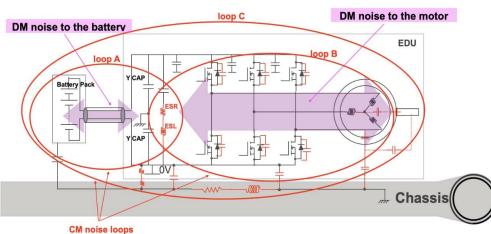
- Modular design up to 850V/330kW (peak, 60s)
- 3-Phase 1200V SiC Inverter Control Module
- INTEL Adaptive Control Unit (HW) & App (SW)
- DC & Phase current sensors
- High temperature DC Link capacitor
- TDK CarXield[®] 900V/400A EMC filter
- DC bus passive discharge
- Liquid cooling for power module & EMC filter

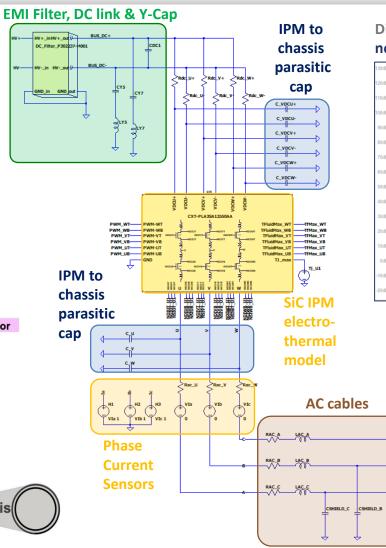

Reference	Description
EVK-PLA1050B-74	650 V _{DC} / 275 A _{RMS} / 150 kW
EVK-PLA1050B-76	650 V _{DC} / 400 A _{RMS} / 250 kW
EVK-PLA1050B-94	800 V _{DC} / 275 A _{RMS} / 200 kW
EVK-PLA1050B-96	800 V _{DC} / 400 A _{RMS} / 300 kW (includes DC link capacitor top cooling)

ON-BOARD SIC INVERTER REFERENCE DESIGN

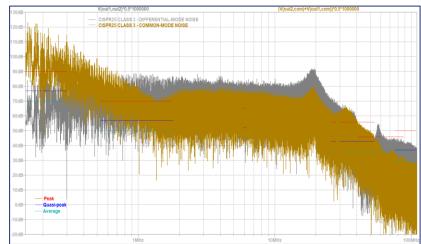
Key characteristics

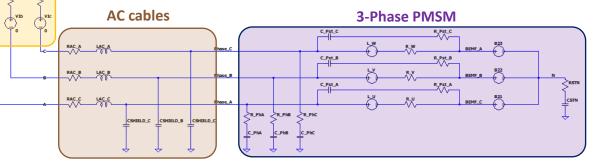
- Output power (peak, 60s): up to 350kW
- DC bus voltage : 100V 850V
- Max Phase Current (steady State) : 250A_{RMS} (limit = Amphenol HVSL1 connector)
- Max Phase Current (peak, 60s) : 600A_{PEAK}
- Output Frequency : 100 2000Hz
- PWM frequency : up to 50kHz (power derating from 20-50kHz)
- Dimensions: 381 x 220 x 90 mm (6.73Litre)
- High power density : 52kW/litre (peak, 60s) 36 kW/L (steady state)



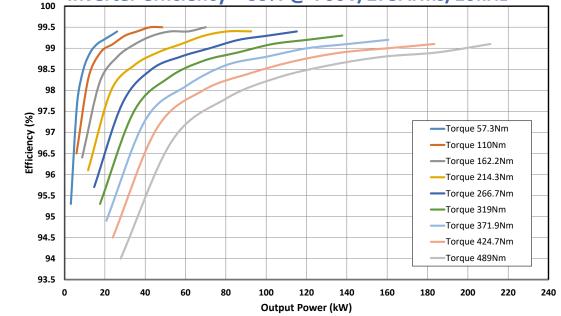

ELECTRICAL & THERMAL MODELLING

INVERTER MODEL & SIMULATION TEST BENCH FOR EMC DESIGN




- Transistor-level modelling of SiC MOSFETs
- Behavioral modelling of the gate driver
- Modelling of parasitics
- Modelling of dV/dt, dI/dt and voltage overshoots
- Modelling of SiC MOSFETs On resistance variation with temperature
- Transient thermal modelling with thermal RC network between T_{Fluid} and T_J

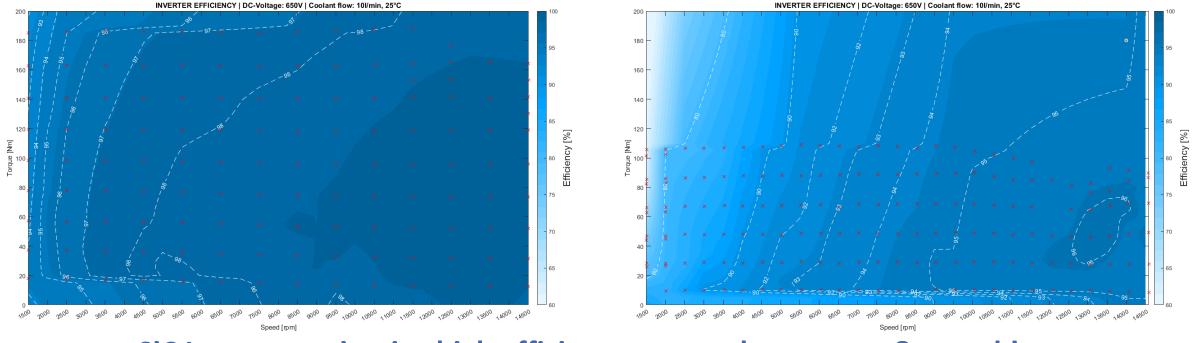
Differential / Common-mode noise & CISPR25 limits


FAST E-DRIVE EVALUATION @ MOTOR BENCH

- Step 1: Adaptive Control App software project configuration
 - According to the e-Motor parameters
- Step 2: Inverter/motor hardware setup
 - Motor signal (e.g. resolver, temperature sensor) & ECU/Bench (e.g. CAN, safety) interfaces
 - Power & Cooling interfaces
 - Check that the inverter is functional @ Active state, nominal DC Link value
- Step 3: System calibration
 - Open loop mode
 - Current closed-loop mode (position offset calibration)
 - Partial open-loop mode (position offset validation)
 - Current close-loop mode
 - Torque control mode
 - Speed closed-loop mode (speed regulator calibration)
- Step 4: Inverter & motor drive characterization

Inverter efficiency > 99% @ 700V/275Arms/10kHz

SIC VERSUS IGBT EFFICIENCY



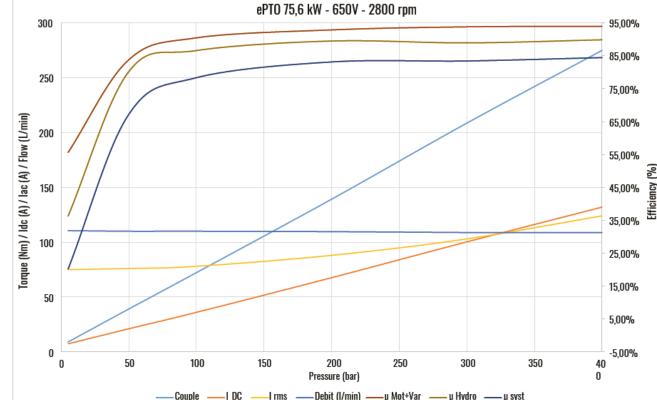
CISSOID SiC Inverter Ref Design @650V

- Max speed: 14500rpm
- Max torque: 190Nm
- Peak output power: 260kW (13500rpm)
- Peak efficiency: 98.9%

IGBT inverter @650V

- Max speed: 14500rpm
- Max torque: 120Nm
- Peak output power: 120kW (11500rpm)
- Peak efficiency: 96.6%

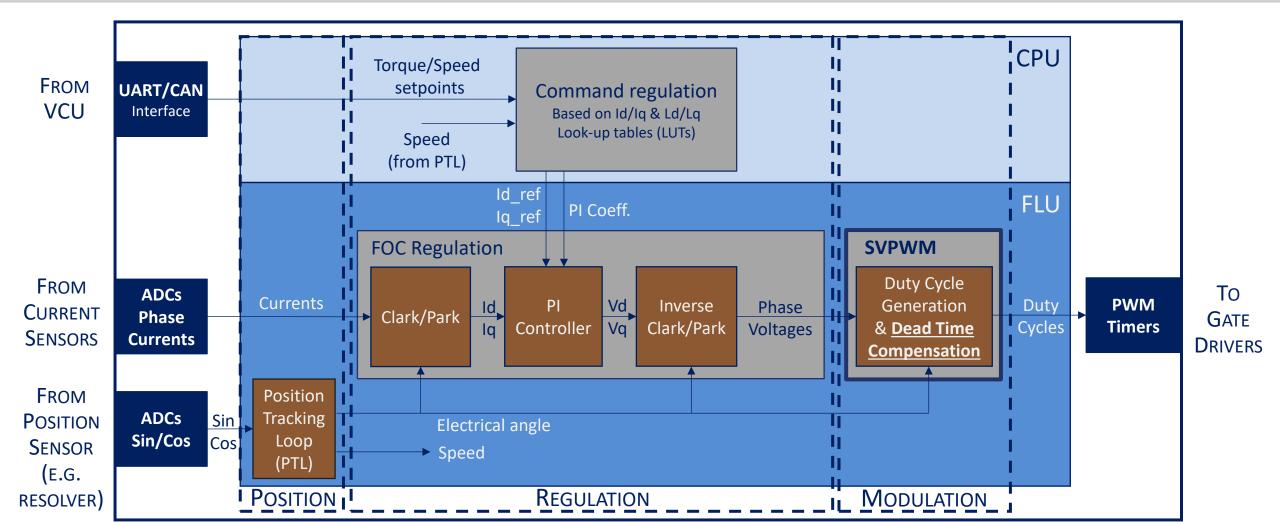
SiC Inverter maintains high efficiency even at low torque & speed !



USE CASE - ELECTRIC POWER TAKE OFF (EPTO)

Electrification of hydraulic pump 76kW / 650V / 2800rpm

- e-motor + inverter = 94% efficiency
- hydraulic pump = 89% efficiency
- system efficiency = 84%



DEAD TIME COMPENSATION

DEAD TIME COMPENSATION (DTC)

PART OF INTEL ADAPTIVE CONTROL APP SVPWM MODULE

Mobility CISSOID

POWER SEMICONDUCTORS

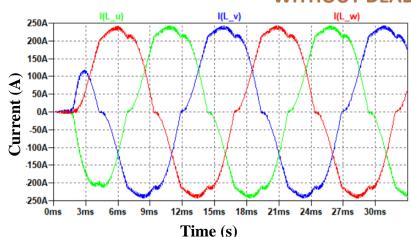
DEAD TIME COMPENSATION (DTC)

- Duty Cycle correction to compensate the effects of the dead time
 - Fundamental output voltage loss
 - Low-Frequency Harmonics (5th, 7th, 11th)
 - Output current and torque ripples
- Compensation $\propto V_{DC}$, $F_{switching}$, Dead time, MOSFET $t_{on} \& t_{off}$ times
- Case study¹: SiC Inverter + PMSM

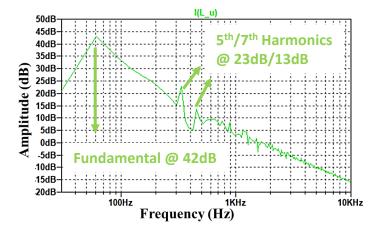
Inverter Parameters	Value	PMSM Motor Parameters	Value
Inverter Control Module	CXT-ICM3SA12550AAA	Rated Power	260 kW
Rated Inverter Power	Up to 350 kW	Rated Torque	180 Nm
Rated Inverter Voltage	Up to 850 V	Rated Speed	14000 RPM
Rated Voltage of IPM	1200 V	Number of pole pairs	4
Rated Current of IPM	550 A	Switching Frequency F _s	12 kHz, 16kHz
SiC MOSFET Turn-on time T _{on}	(97+102)= 199 ns	User-defined Dead time T _d	2 µs
SiC MOSFET Turn-off time T _{on}	(276+52)= 328 ns	DC Bus Voltage V _{dc}	650 V

¹ <u>T. Bonnin, M. Nasir, P. Delatte, M. El Mokadem, "Implementation and Validation of a Simplified Dead Time Compensation Scheme for a High-Power</u> Space Vector Controlled SiC Inverter PMSM Drive", 2024 IEEE Workshop on **Control and Modelling for Power Electronics** (COMPEL)

SIMULATIONS IN LTSPICE WITH AND WITHOUT DEAD TIME COMPENSATION

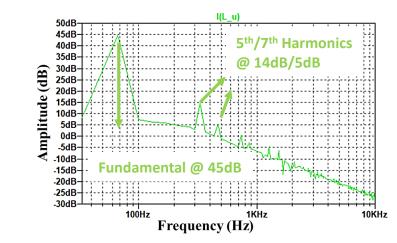

Case Study Speed = 1000 Rpm, Torque= 50 Nm

SIMULATION PARAMETERS

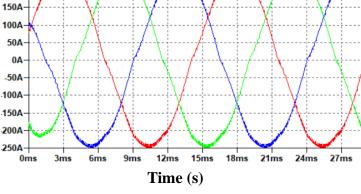

- SPECIFIC INPUT DATA
 - High Voltage Battery Voltage : 650 V
 - DC-link Capacitor : 320 uF / 750 V
 - ICM CXT-PLA3SA12550AA : 1200 V / 550A
 - SVPWM modulation
 - Dead time = 2 μs
 - Fswitching = 16 kHz

PMSM CHARACTERISTICS

- Number of pole pairs : 4
- Flux linkage : 0.048 Wb
- D-axis inductance : $55 \ \mu H$
- Q-axis inductance : 150 µH
- Stator self-inductance : 160 μH
- Stator self-resistance : 0.008 $\boldsymbol{\Omega}$



WITHOUT DEAD TIME COMPENSATION



WITH DEAD TIME COMPENSATION

 $I(L_w)$

© CISSOID 2025 | CONFIDENTIAL - @ CISSOID 2000 – 2025 all rights reserved | Slide28

I(L_V)

I(L u)

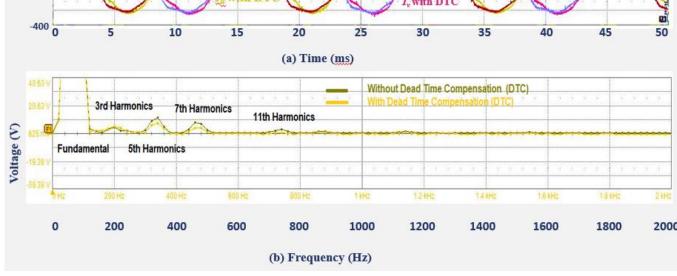
250A

200A

Current (A)

DTC - MOTOR BENCH VS SIMULATIONS CASE STUDY: SPEED = 1000 RPM, Torque= 50 Nm

400 Phase U and Phase V currents I, without DTC In without DTC TELEDYNE LECROS 300 Apeak 200 nerevouioo Current (A) 0 -200 with DTC

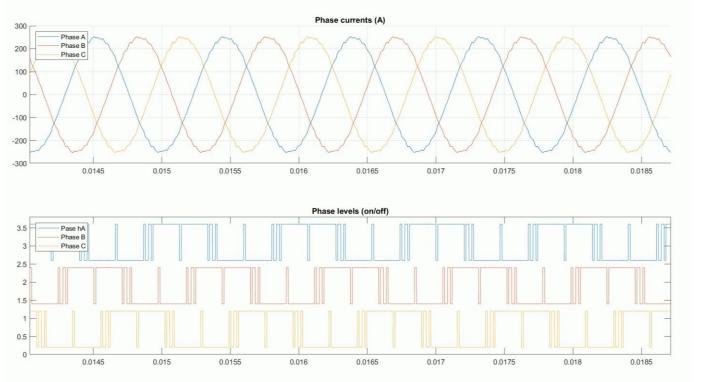

CISSOID SiC Inverter Lauterbach **Reference Design** debugger embedded with OLEA T222 FPCU Load Motor **Cooling** Pipes **PMSM Motor** Under Test **High Voltage** Three-phase DC Input AC output Monitoring and Control Software

COMPARATIVE ANALYSIS

		I _u FFT ((simulatio	ns)		I _u FFT (motor bench)			
		Fund. Normalized (%)	5 th Normalized (%)	7 th Normalized (%)	THD (%)	Fund. Normalized (%)	5 th Normalized (%)	7 th Normalized (%)	THD (%)
	W/O DTC	100	6.2	3.2	7.3	100	8.9	5.4	7.8
0	With DTC	101.4	2.6	1.2	3.1	101	5.4	2.8	4.7
	Improv.(%)	1.4	59	63	4.2	1	39	48	3.1

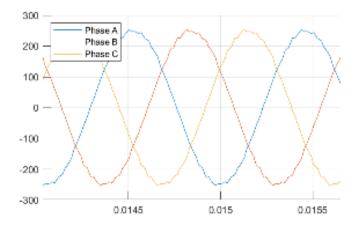
Improvement in phase current THD thanks to DTC demonstrated both in simulations and on the bench !

MOTOR BENCH DATA



OPTIMIZED PULSE PATTERNS

OPTIMIZED PULSE PATTERNS


- A control method replacing conventional modulations as SVPWM, DPWM, SIX STEPS, etc.
- Based on the electrical angle:
 Not time-based as SVPWM modulation
- OPP applies a switching pulse pattern repetitively at each electrical period.
- No PWM carrier : full freedom to locate switching pulses at any angular position.
- Optimized for a motor speed-torque range.
- OPPs are generated offline in a digital process using tuned models of the inverter and motor

CISSOID's SiC Inverter solutions offer a ready-to-use hardware platform for Intel Automotive's Adaptive Control App (ACA) and its high-performance OPP modulation

OPP VS SVPWM GATE CONTROL

OPP

0.015

0.0155

3.5

3

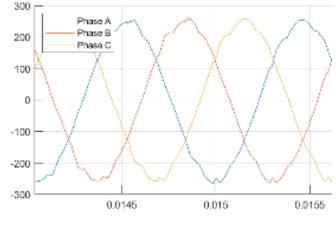
2.5

2

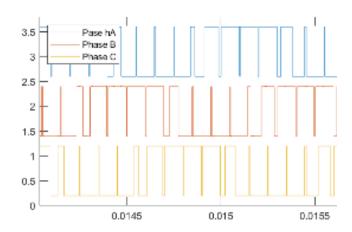
1.5

-1

0.5


0

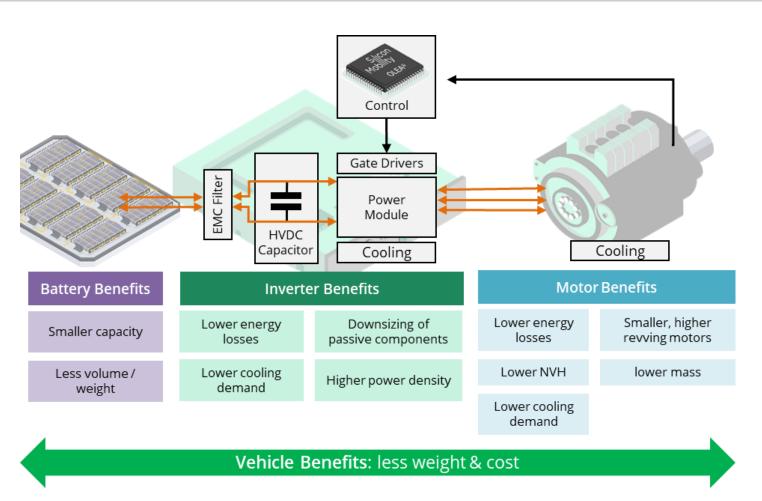
Pase hA


Phase B

Phase C

0.0145

SVPWM


Number of switching pulses and related angle positions are determined to optimize the modulation **upon different criteria**:

- Inverter losses
- E-motor losses
- Total Harmonic Distortion (THD)
- Noise, Vibration and Harshness (NVH)
- Current ripple

OPP BENEFITS

Motor & inverter benefits

- Up to 5% efficiency gain (inverter & motor) at critical load points
- Control of electrical machines revving supporting 100.000 rpm and above
- 20% higher torque out of the same motor or 20% lower battery voltage by extended overmodulation
- Tuneable, Improved NVH behaviour

Vehicle benefits

- Cost & weight savings by motor downsizing
- Cost & weight savings by DC-Link capacitor downsizing by 2 and reducing by 40% the peak cooling demands (Inverter)
- Cost & weight savings from lower battery voltage or higher power/peak torque out of the same motor
- Cost & weight savings from lower sound-insulation requirements

CISSOID WER SEMICONDUCTORS

UNIQUE INVERTER SOLUTIONS

Modular & open platform

Footprint-compatible power modules make it easy to vary up and down in power range, according to the needs across vehicle families. Controller solutions can be provided or swapped for in-house developments.

Highly Modifiable

3

Most parts of the design, from the semiconductor components to the software and the mechanical design, can be adapted to the application's needs.

Single Point of Contact

Single point of contact for technical support on hardware and software

Components to Software

Single supplier from individual components over control boards to motor control software and reference designs

Easy, proven solution

A proven design, tested across a wide range of use cases, up and running within days

QUESTIONS?

SALES@CISSOID.COM

WWW.CISSOID.COM